Vection in depth during treadmill walking.

نویسندگان

  • April Ash
  • Stephen Palmisano
  • Deborah Apthorp
  • Robert S Allison
چکیده

Vection has typically been induced in stationary observers (ie conditions providing visual-only information about self-motion). Two recent studies have examined vection during active treadmill walking--one reported that treadmill walking in the same direction as the visually simulated self-motion impaired vection (Onimaru et al, 2010 Journal of Vision 10(7):860), the other reported that it enhanced vection (Seno et al, 2011 Perception 40 747-750; Seno et al, 2011 Attention, Perception, & Psychophysics 73 1467-1476). Our study expands on these earlier investigations of vection during observer active movement. In experiment 1 we presented radially expanding optic flow and compared the vection produced in stationary observers with that produced during walking forward on a treadmill at a 'matched' speed. Experiment 2 compared the vection induced by forward treadmill walking while viewing expanding or contracting optic flow with that induced by viewing playbacks of these same displays while stationary. In both experiments subjects' tracked head movements were either incorporated into the self-motion displays (as simulated viewpoint jitter) or simply ignored. We found that treadmill walking always reduced vection (compared with stationary viewing conditions) and that simulated viewpoint jitter always increased vection (compared with constant velocity displays). These findings suggest that while consistent visual-vestibular information about self-acceleration increases vection, biomechanical self-motion information reduces this experience (irrespective of whether it is consistent or not with the visual input).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vection in depth during consistent and inconsistent multisensory stimulation in active observers

The study of visual illusions of self-motion, or vection, has a long history of research dating back to its first descriptions by Helmholtz (1867). Early vection studies tended to induce vection in physically stationary observers or passively moved observers (externally generated perceptions of self-motion). It has not been until recently that studies have examined this experience in actively m...

متن کامل

Evidence against an ecological explanation of the jitter advantage for vection

Visual-vestibular conflicts have been traditionally used to explain both perceptions of self-motion and experiences of motion sickness. However, sensory conflict theories have been challenged by findings that adding simulated viewpoint jitter to inducing displays enhances (rather than reduces or destroys) visual illusions of self-motion experienced by stationary observers. One possible explanat...

متن کامل

Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling ...

متن کامل

Consistent stereoscopic information increases the perceived speed of vection in depth.

Previous research found that adding stereoscopic information to radially expanding optic flow decreased vection onsets and increased vection durations (Palmisano, 1996 Perception & Psychophysics 58 1168-1176). In the current experiments, stereoscopic cues were also found to increase perceptions of vection speed and self-displacement during vection in depth--but only when these cues were consist...

متن کامل

Simulated angular head oscillation enhances vection in depth.

Research has shown that adding simulated linear head oscillation to radial optic flow displays enhances the illusion of self-motion in depth (ie linear vection). We examined whether this oscillation advantage for vection was due to either the added motion parallax or retinal slip generated by insufficient compensatory eye movement during display oscillation. We constructed radial flow displays ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Perception

دوره 42 5  شماره 

صفحات  -

تاریخ انتشار 2013